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FLUTTER OF BUCKLED, SIMPLY  SUPPORTED, RECTANGULAR PANELS 

AT SUPERSONIC SPEEDS 

By Robert W. Fralich  and  John A. McElman 
Langley  Research  Center 

SUMMARY 

A theoretical  flutter  analysis is presented for buckled,  simply  supported  panels 
subjected  to  supersonic flow over  one  surface.  The  analysis  employs  the Von Karman 
large-deflection  plate  theory  and  linearized static aerodynamic  strip  theory. A Galerkin 
procedure  using  four  static  mode  shapes is employed  to  determine a set of differential 
equations which is programed on an  analog  computer. The character of the output of the 
analog is used  to  determine  the  flutter  speed.  Results are obtained for  panels with ratios 
of length  in the streamwise  direction  to  length  in  the  cross-flow  direction  equal  to 1/2 
and 1 for  three  specified  in-plane  edge-loading  conditions. An assessment of effects of 
cross-flow coupling of the  modes is made by comparison of the results with those obtained 
when  cross-flow  coupling  between  the  modes is neglected. 

INTRODUCTION 

Panel  flutter  has  been  encountered  in the operation of aircraft  and missiles and has 
become  an  important  consideration  in the design of structures  for  such  vehicles.  The 
panel  flutter  problem is influenced by many  factors,  such as aerodynamic  effects, effects 
of boundary  conditions  and  midplane  compressive  loads,  and  length-width  ratio. In addi- 
tion, i f  the midplane  compressive stresses are of sufficient  magnitude  to  cause  buckling, 
the  flutter  problem is further  complicated.  These  various  aspects of the  flutter  problem 
are discussed,  for  example,  in  references 1 to 10; some of the earlier investigations are 
listed  in  reference 1. Reference 1 considers  the  flutter of buckled,  simply  supported 
panels.  In  reference 1 the  mechanism  for  flutter is shown to be a streamwise coupling 
between  the  modes. The purpose of the  present  analysis is to  obtain a more  accurate 
solution  to  this  particular  problem by  investigating  cross-flow  coupling  between  the 
modes.  Cross-flow  coupling is a phenomenon  which  does  not  occur  in  the  small- 
deflection  flutter  analysis of uriouckled, simply  supported  panels. 

The  results  presented  in  reference 1 were obtained from a two-mode Galerkin  solu- 
tion,  and  rigorous  analytical  methods  were  used  to  determine  the  panel  stability.  In  the 
present  analysis a general  Galerkin  solution is obtained  and  the  stability of the panel is 
determined  for a four-mode  solution  by  use of an  analog  computer.  Points  on  the  flutter 



boundaries  have  been  determined  for  three  in-plane  edge-loading  conditions  for  ratios 
of the  length  in  the  streamwise  direction  to  the  length  in  the  cross-flow  direction  equal 
to 1/2 and 1. 

SYMBOLS 

coefficients  in  displacement  expressions  (eqs. (9)) 

a length of plate  in  streamwise  direction 

b  width of plate  in  cross-flow  direction 

Cmn  amplitude  coefficients  for  lateral  displacement 

D flexural  rigidity, Eh3 
12(1 - p2) 

E Young's  modulus 

Fmn,Gm,,Hmn Fourier  coefficients  (see  eqs. (12)) 

h  plate  thickness 

M  Mach  number 

parameters defined  in  equations (21) 

m,  n  number of half-waves  in  streamwise  and  cross-flow  directions,  respectively 

Nx,Ny,Nxy midplane stress  resultants 

Nx,%y,%q nondimensional  midplane stress  resultants;  - - 
a2D'  ~r2D 

, and -, 
- Nxa2 Nya2 Nqa2 

respectively 7T2D 

Px2y  average  in-plane edge  loads  per  unit  length,  positive 

- 
P x 3 y  nondimensional  in-plane  edge  loads  per  unit  length; 

respectively 

in  compression 
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integers 

dynamic  pressure, 3pV 1 2  

time 

in-plane  displacements,  positive  in x- and y-directions,  respectively 

nondimensional  in-plane  displacements,  positive  in x- and  y-directions; 

” Eha u  and - ‘ha2 v,  respectively 
T2D a2Db 

free-stream  velocity 

lateral  deflection,  positive  in  z-direction 

nondimensional  lateral  deflection,  positive  in  z-direction, w 

rectangular  Cartesian  coordinates  (see  fig. 1) 

Y 

6mn 

x 

xc r 

P 

v = a/b 

5,rl 

P 

7 

mass  density of plate  material 

Kronecker  delta,  equals 1 i f  m = n, equals 0 if m st n 

speed  parameter, 1 ~ ~ ~ 3  
37r4pD 

flutter  speed  parameter 

Poisson’s  ratio 

nondimensional  coordinates;  x/a and y/a, respectively 

free-stream  density of fluid 

nondimensional  time, 2 tE 
a2 Y 
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When subscripts . 5 ,  q, and T follow a comma,  they  indicate  partial  differentia- 
tion  with  respect  to [, q, and T, respectively.  Dots  over  symbols  denote  derivatives 
with  respect  to 7. 

STATEMENT OF PROBLEM 

The  configuration  analyzed  in  this  report is the  simply  supported, flat, rectangular 
panel shown in  figure 1. The  panel  has a constant  thickness  h  with air flowing  over 

the  top  surface at a Mach  number M. No flow of 
air beneath  the  panel is considered.  Average 
in-plane  edge  loads Px and PY per  unit  length 
(positive  in  compression)  are  specified  at  the 

t 
kT boundaries. No in-plane  shearing  forces  are 

I C l t t t l + t  
-c 

applied  to  the  plate. 

METHOD OF SOLUTION 

The  present  analysis  employs  the  large- 
X, [ deflection  plate  theory of Von Karman and linear- 

ized  static  aerodynamic  strip  theory.  This  aero- 

J/ 
dynamic  approximation  has  previously  been shown 
to  yield  accurate  flutter  boundaries  for  Mach num- 
bers  greater  than  about 1.6. The  resulting  equa- 
tions  are  analyzed  in  the  appendix by means of a 

-7 
h 

Figure 1.- Rectangular  panel  and  coordinate Galerkin  procedure which utilizes  the doubly 
system. infinite  set of static  buckling  modes.  This  pro- 

cedure  yields a doubly  infinite  set of second-order  nonlinear  ordinary  differential  equa- 
tions  for  the  time-dependent  amplitude  coefficients cmn. These  equations  can  be 
reduced  to  those  for  various  approximate  analyses  that  utilize a finite  number of static 
buckling  modes.  The  set of four  equations,  obtained  from  an  approximate  analysis  that 
uses  four of the  static  modes, is analyzed by means of an  analog  computer in order  to 
find a flutter  speed  parameter her. The  modes  considered  have  amplitude  coefficients 
Cmn,  where m = 1 and 2 and  n = 1 and 2 a r e  the  number of half waves  in  the  stream- 
wise and cross-flow  directions,  respectively. 

In  the  analog  analysis,  the  character of the  time  histories of the  amplitude  coeffi- 
cients is observed  while  the  initial  static  buckling  condition is altered by gradually 
increasing  the  speed  parameter X to a given  level.  Analog t races  which illustrate  the 
method of determining  flutter  are  given  in  figure 2. For levels of X below the  critical 
value X,, (fig. 2(a)), the  amplitude  coefficients  do  not  build  up  with  time  and  the  motion 
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I 

2 - :  
c12 0 

- 7  - 

(at  Stable  motion. (A < her) 

c21 

A 

(bt Unstable  motion. (A > Acr) 

F igure 2.- Variation of amplitude  coefficients  with  time. 

is considered  stable.  For  levels of X above  the  critical  flutter  speed X,, (fig.  2(b)), 
the  amplitude  coefficients show a drastic buildup with  time.  The  character of the  motion 
is observed  for  different  levels of X until  the  critical  flutter  speed  parameter Xcr is 
determined.  The  value of hcr for  the  case  illustrated  in  figures 2(a) and 2(b) is indi- 
cated by the  tick  mark.  Values of Xcr are  determined  for  three  in-plane  loading  con- 
ditions  for two values of a/b,  the  ratio of length  in  the  streamwise  direction  to width in 
the  cross-flow  direction. 

RESULTS AND DISCUSSION 

Results  for  the  flutter  boundaries  obtained  from  the  present  analysis  are  given by 
the  circles  in  figures 3 to 5. Flutter  boundaries ( A  = Acr) are plotted  in  these figures 
as a function of in-plane  edge  loading for  a/b of 1/2 and 1. Flutter  occurs  above 
these  boundaries and stable motion is obtained below the  boundaries.  Results  for  speci- 
fied  values of i?, with i?, = 0, for  specified Py with i?, = 0, and for  specified 
P, = Py are shown in  figures 3, 4, and 5, respectively.  Also  shown  in  these  figures 
are the  flutter  boundaries  presented  in  reference 1 which were obtained by a rigorous 
stability  analysis  using  just two modes.  The  curve labeled n = 1 is the  flutter 

- 
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- 2 modes (buckled) 
o 4 modes (present  analysis 1 

0 2 4 6 8 1 0 1 2  

A 

A 

0 5 10 15 20 25 30 - 
PX 

(b) v = 1. 

Figure 3.- Flutter  boundaries for pan_els wi th  
streamwlse  compressive  load P,. Py = 0. 

- - _  2 modes (unbuckled) ( ref. ) 

- 2 modes (buckled) i 
o 4 modes (present  analysis 1 

n=l  

0 0  

(11111 
0 10 20 30 40 50 

- 
P 

Y 

Figure 4.- Flutter  boundaries fcr panels  with 
cross-flow  compressive load  Py. P, = 0; 
v = 1. 

boundary  obtained by considering only the  C11 
and C21 modes,  whereas  the  one  labeled  n = 2 
utilizes  the C12 and  C22  modes. 

The  results show effects of cross-flow 
coupling of the  modes  on  the  flutter of simply 
supported,  rectangular  panels  in  supersonic flow. 
Theoretically, this coupling  does  not exist on the 
portion of the  flutter  boundary  prior  to  buckling 
(the  dashed  line  portions of figs. 3, 4, and 5). One 
result  in  the  present  four-mode  analysis  was 
determined  in  the  unbuckled  range.  (See  fig. 4.) 
Figure 4 confirms  the  absence of cross-flow 
coupling  in  the  unbuckled  range  and  gives  an 

-” 2 modes (unbuckled) f ( ref. 1 
- 2 modes (buckled) 

o 4 modes ( present  analysis ) 

l2 r 

0 4 8 12 16 

(a) v = 1/2. 

4 1  11111 
0 4 8 12  16 

(b) v = 1. 

Figure 5.- Flutter  boundaries  for  panels 
with  equal  streamwiie and_ cross-flow 
compressive loads. P, = Py. 
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indication of the  validity of the  procedure  used  in  determining  the  flutter  criterion. On 
the  portion of the  flutter  boundary for buckled  panels,  cross-flow  coupling of the  modes 
has an effect on the  flutter  boundary  for  certain  values of a/b  and  in-plane  loading 
conditions. For the two square  panels  under  streamwise  loading  and  under biaxial 
loading  (figs. 3(b) and 5@)) the  effects are negligible.  However, for  the  panels shown in 
figures 3(a), 4, and 5(a), effects of cross-flow  coupling  on  the  flutter  boundary are sig- 
nificant. For these  cases  (except  for a region of fig. 3(a)), the  effect of cross-flow 
coupling is to  lower  the  flutter  boundaries. 

The  results show that  the  effects of cross-flow  coupling  can  be  important  in  deter- 
mining  flutter  boundaries  for  buckled  panels.  In this analysis no investigation is made 
of the  convergence of the  Galerkin  solution. To do this  more  modes would have  to  be 
considered. In order  to  facilitate  such a study,  the  modal  solution that includes all the 
static  buckling  modes is presented  in  the  appendix. 

CONCLUDING REMARKS 

A supersonic  flutter  analysis is presented  for  simply  supported,  rectangular  panels 
subjected  to  specified  in-plane  compressive  edge  loads. A Galerkin  procedure  that 
utilizes  the doubly infinite  set of the  static  buckling  modes  yields a doubly infinite  set of 
differential  equations  that  can  be  reduced  to any desired  finite  number of equations.  The 
equations  have  been  programed on an  analog  computer for a stability  analysis  for a four- 
mode  solution that exhibits  both  streamwise and cross-flow  coupling of the  modes.  The 
character of the  output of the  analog  computer is then  used  to  determine  the  critical 
flutter  condition.  Numerical  results  are  presented  for  panels with ratios of length  in  the 
streamwise  direction  to  length  in  the  cross-flow  direction  equal  to 1/2 and 1. The  fol- 
lowing  specified  in-plane  boundary  edge  conditions are  considered: (a) streamwise  com- 
pressive loading only, (b) cross-flow  compressive  loading only, and (c) equal  streamwise 
and  cross-flow  compressive  loading.  The  results show that the  effects of cross-flow 
coupling are  important  in  determining  flutter  boundaries  for  buckled  panels  since  the 
flutter  speed  can  be  appreciably  reduced  from  the  value  determined  without  cross-flow 
coupling. 

Langley  Research  Center, 
National  Aeronautics  and  Space  Administration, 

Langley  Station,  Hampton, Va., July 6, 1967, 
126-14-02-24-23. 
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APPENDIX 

ANALYSIS 

The  nonlinear  differential  equations  expressing  the  equilibrium of an  aerodynami- 
cally  loaded  oscillating  panel  based  on Von Karman  large-deflection  plate  theory are 
obtained  in  nondimensional  form  in  reference 1. These  equations  can be written as 
follows: 

where 

! 
in which i, 7, and W are nondimensional  displacements, N,, Ny, and NxY are non- 
dimensional stress  resultants,  [ and q are nondimensional x and  y coordinates, 
7 is nondimensional  time, IJ- is Poisson's  ratio,  and h is the  speed  parameter. 

I - 

The  boundary  conditions  to  be  satisfied by W are the  simple-support  conditions 

The boundary  conditions  to  be  satisfied by ii and V are those  for  uniform  displace- 
ment of each  edge  in  the  plane of the  plate 
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APPENDIX 

and  those for zero  in-plane  shear stress at the  edge of the  plate 

Appropriate  boundary  c.onditions  for  the  edge  loads are 
\ 

and Px and Py a r e  nondimensional  in-plane  edge  loads  per  unit  length. 
- 

The  boundary  conditions  (eqs. (5), (6), and (7)) can  be  satisfied if the  displacements 
ii and ? are  writ ten as 

i i = A g + A 1 t +  1 2 A,, sin  mnt  cos 
m=l  n=O 

V = BO + B1q + b 
m=O n=l 

and if the  normal  displacement W is written as 

The  nonlinear  terms on the  right-hand  side of equations (1) and (2) can  also  be 
expanded  in  Fourier  series as follows: 
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APPENDIX 

where 

J 
where 

6,, = 0 (m f n) 

6,, = 1 (m = n) 

When equations (9) and (11) are  substituted  into  equations (1) and (2) the  coefficients 
Am, and  Bmn be determined  in  terms of Fmn, Gmn, and Hmn as follows: 

The  displacements ii and ? a r e  now known in  terms of Ao, AI, Bo, B1, 
Fmn, Gmn, and Hmn. The stress resultants  are  obtained  in  terms of the  coeffi- 
cients A i ,  B1, Fmn, Gmn, and Hmn by substitution  from  equations (9), ( l l ) ,  and 
(13) into  equation (4). In  order for Rx and INy to  satisfy  the  boundary  conditions 
(eq. (8 ) ) ,  the  constants  A1  and  B1  must  have  the  values . 
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APPENDIX 

where, when use is made of equations (10) and (12), 

F00 = 1 p2Cpq2 
p=l  q=l 

8 

J 
The  stress  resultants  become 

- - 
Nx = -Px + 

b 
cos mnt; cos 

n= 1 

- - 
Ny = -Py + GmO cos  mnt; + m2Jmn 

2 
m= 1 m=l  n=l [m2 + ( a i ]  

sin mat; sin 
2 b 

where 
n 

When use is made of equations (12) and  (14), FOn, Gn,O, and Jmn become 

(n = 1,  2, . . ., m) 1 
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APPENDIX . .  

Substitution of equations (10) and (16) into  equation f3). and.application of the  Galerkin 
procedure  yields 

The  modal  solution (eq. (19)) that  utilizes  the doubly infinite set  of static  mode 
shapes  reduces  to any desired  approximate  solution  that  uses a finite  number of modes 
simply by deleting  the  undesired  modes. In the  present  analysis  numerical  results  are 
found for a four-mode  solution so  that 

and  equation (19) becomes 
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APPENDIX 

M3 = 3, + 4v2By - (1 + 4v2) 2 

M4 = 4Bx + 4v2Py - 16(1 + ~ 2 ) ~  

q14.d) 16 

P2 = k(16 + v4) 

P3 = ~ ( l  1 + 16~4) 

P4 = 1 + v4 

Q = -4(1 :6 [ + v4) + 81v4 2 +  
v4 

(1 + 42) (9 + 42) 2 

s = LI(1 16 + v4) + 81v4 + 

(4 + v q 2  (4 + v4 9vq2 1 
T = 16 

K = - (16 + v4) + 1 
[: v4 .] 

81v4 + V 

(16 + v2)2 (16 + 9v2) 411 
N = -(1 + 16v4) + 81v4 + 

(1 + 1 6 ~ ~ ) ~  (9 + 16v2) 

H=l+v4+ 25v4 + 2 5v4 
(1 + 9v2)2  (9 + v q 2  

in  which v = a/b. In  equation (21) the  double  dots  over  the  coefficients  Cmn  repre- 
sent  the  second  derivative  with  respect  to T. Equations (21) are set  up  on an  analog  com- 
puter  in  order  to  determine  the  flutter  speed X = Xcr as a function of the  in-plane  edge 
loads and  a/b. 
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